Rewriting XPath Queries Using Materialized Views

Wanhong Xu and Z. Meral Özsoyoğlu
Case Western Reserve University
Cleveland, Ohio 44106
Query rewriting using materialized views in relational databases has been successfully used in:

- Query Optimization
- Data Integration
- Data Warehouse Design: View Selection to Materialize
- Semantic Data Caching
Materialized XPath Views

- Server Side: Most XML indexing schemes can be modeled as materialized XPath Views [Balmin, et. al. VLDB’04]
- Client Side: Previous XML queries with their results can be seen as materialized XPath views

Several theoretical studies on

- Containment and Equivalence of XML queries [Miklau, Suciu, PODS’02, JACM’04, Neven, Schwentick, ICDT’03, Grahne, Thomo, PODS’03, Wood, ICDE’03]
- Minimization of XML queries [Wood, WebDB’01, Amer-Yahia, et. al., SIGMOD’02, Flesca, et.al. VLDB’03]
- Complexity of XPath Query Evaluation [Gottlob, et. al. ICDE’03, PODS’04]

Not as much on XPath query rewriting
Roadmap

Motivation
XML & XPath
Problem Definition
Rewriting Existence Problem
Finding Minimal Rewritings Problem
Conclusion & Future Work
Motivation

Server Side: XML Document

```xml
(Pathway name = "PA1">
  <Reaction name = "RE1">
    <Enzymes>
      <Protein name = "PR1" EC# = "1.0.0.1"/>
      <RNA name = "RN1"/>
    </Enzymes>
  </Reaction>
  <Reaction>
    <Enzymes>
      <RNA name = "RN2">
    </Enzymes>
  </Reaction>
</Pathway>
```

Client Side:

```xml
v: /Reaction/Enzymes
<Enzymes>
  <Protein name = "PR1" EC# = "1.0.0.1"/>
  <RNA name = "RN1"/>
</Enzymes>
<Enzymes>
  <RNA name = "RN2">
</Enzymes>
```

Compensation Queries

Q2: Reaction/Enzymes[/Protein]

Q2': Enzymes[/Protein]

Q3: Reaction/Enzymes/Protein

Q3': Enzymes/Protein

Q4: /Reaction[@name = "RN2"]/Enzymes ?
Given an XML database, and a cached query result. Question: How to answer a new query by using the cached result?

- Is there a *compensation* query?

- If it exists, then what is the *best* compensation query?
 - Depends on many factors: # of descendant axes, wildcards, and so on.
 - Only *size* is considered.
<Pathway name = "PA1">
 <Reaction name = "RE1">
 <Enzymes>
 <Protein name = "PR1" EC# ="1.0.0.1"/>
 <RNA name = "RN1"/>
 </Enzymes>
 </Reaction>
 <Reaction>
 <Enzymes>
 <RNA name = "RN2"/>
 </Enzymes>
 </Reaction>
</Pathway>
XPath Queries -> Tree Patterns

XPath Fragment \(\text{XP}\{/, [], *, //\} \)
- Node tests
- Child axes (/)
- Descendant axes (//)
- Wildcards (*)
- Predicates ([...])

It’s three subclasses
- \(\text{XP}\{/, [], //\} \)
- \(\text{XP}\{/, * , //\} \)
- \(\text{XP}\{/, [], * \} \)
XML tree: $t(V_t, E_t, r_t)$
Tree pattern: $p(V_p, E_p, r_p, o_p)$

Embedding: $e: V_p \rightarrow V_t$

Root preserving
Label preserving
Structure preserving

Let $n = e(o_p)$, then subtree with root n of t $(t)^{e(op)}$ is the result of embedding.

Result
$p(t) = \cup \{(t)^{e(op)}\}$

for all embeddings from p to t.
Containment and Equivalence of Tree Patterns

- P_2 is contained in P_1 if $P_2(t) \subseteq P_1(t)$ for any XML tree t
- $P_2 \equiv P_1$ if P_2 is contained in P_1 and P_1 is contained in P_2

Tree Pattern: p_1

Tree Pattern: p_2
The XPath fragment and its three subclasses are close under concatenation.
Rewriting Existence Problem
Finding Minimal Rewritings Problem

\[? \oplus \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{f} \\
\text{b} \\
\text{c} \\
\text{e} \\
\text{v}
\end{array} \\
\begin{array}{c}
\text{a} \\
\text{c} \\
\text{e} \\
\text{p} \\
\text{f}
\end{array}
\end{array} \equiv \]
Rewriting existence problem is equivalent to the containment problem of patterns.

- Let \(p \) and \(v \) be two patterns with output nodes as roots. \(p \) is contained \(v \) iff there exists a rewriting of \(p \) using \(v \)

Rewriting existence problem is coNP-hard for XP\{/, //,*,[]\}

- The containment problem is coNP-complete for XP\{/, //,*,[]\}

Is the rewriting existence problem for three subclasses of XP\{/, //,*,[]\} still in P?

- The containment problem is P for the three subclasses.
Homomorphisms

For $\text{XP}\{/\}, \text{XP}\{/\}, \text{XP}\{/\}$, if p_2 is contained in p_1, then a homomorphism exists from p_1 to p_2

For $\text{XP}\{/\}, \text{XP}\{/\}, \text{XP}\{/\}$, if p_2 is contained in p_1 and p_1 is standardized, then a homomorphism exists from p_1 to p_2
Rewriting Existence

Theorem:
For three subclasses of $\text{XP}\{/, [], *, //\}$, the Rewriting Existence problem is in P.

Basic idea:
Given two patterns p and v,
If there exists a compensation pattern p' of p using v then there is a node n_p in p such that subtree of p with root n_p is also a compensation pattern of p using v.

For three subclasses, only one subpattern of p need to be considered for the existence of rewriting of p using v.
Rewriting Existence

XP{/,//,[]} and XP{/,*,[],}
Rewriting Existence

$XP\{/,, *,\}$
<table>
<thead>
<tr>
<th>Language</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP{/, //,*,[[]]}</td>
<td>coNP-Hard</td>
</tr>
<tr>
<td>XP{/, //, [[]]}</td>
<td>P</td>
</tr>
<tr>
<td>XP{/,*,[[]]}</td>
<td>P</td>
</tr>
<tr>
<td>XP{/, //,*}</td>
<td>P</td>
</tr>
</tbody>
</table>
Finding Minimal Rewritings Problem

Minimization of Patterns

The Complexity for $\mathsf{XP}\{/ , //, *, []\}$

The Complexity for three subclasses of $\mathsf{XP}\{/ , //, *, []\}$

- A special case—output node is the root
- The general case.
Minimization of Tree Patterns

Minimizing a pattern ρ: Find an equivalent pattern with minimum size.

- Pruning all redundant subpatterns.

p_1 p_2
Minimal Rewriting for XP{/, //, *, []}:

Let p and v be two patterns, p' is the minimal compensation pattern of p using v, i.e., $p' \oplus v \equiv p$.

- Observation 1: p' doesn’t introduce new label.
- Observation 2: p' doesn’t increase the size, i.e., the size of p' is less than the size of p.

The problem of whether there exists a compensation pattern p' of p using v such that p' has size less than k is \sum_{3}^{p}, where $k < \|p\|$.

- Guess in polynomial time a pattern p', which doesn’t introduce new label, and has size less than k.
- Check whether $p' \oplus v \equiv p$ is in coNP.
The three subclasses of $\text{XP}\{/\,\,//,\,*,[],\}\}$

The minimization for three subclasses of $\text{XP}\{/\,\,//,\,*,[],\}\}$ is in P. [Wood, WebDB’01, Amer-Yahia, et. al., SIGMOD’02]

Is the finding minimal rewritings problem for three subclasses of $\text{XP}\{/\,\,//,\,*,[],\}\}$ still in P?

- Any rewriting is minimal for the $\text{XP}\{/\,\,//,\,*\}\}$ subclass.
- Yes, for $\text{XP}\{/\,\,//,\,[]\}\}$ and $\text{XP}\{/\,\,\,*,[],\}\}$ subclasses, our result is based on pruning rewriting-redundant nodes.
A Special Case

Let p be a pattern, and the view v be a special pattern whose output node is its root.

- If a compensation pattern of p using v exists, then p is a compensation pattern.

- The **minimal** compensation pattern can be found among subpatterns of p.
An Example

Minimal Rewriting

(a) p

(b) $p - n_p$

(c) v

(d) $p \oplus v$

(e) $(p - n_p) \oplus v$
The General Case

For XP{/, //, []} and XP{/,*,[]} subclasses, the general case of the problem of finding minimal rewritings can be reduced to the special case of the finding minimal rewritings problem.
If \((p)_{sub}^{np}\) is a compensation pattern of \(p\) using \(v\), then it is a also compensation pattern of itself using \((v)_{sub}^{ov}\).

Then, the minimal compensation pattern of \((p)_{sub}^{np}\) using \((v)_{sub}^{ov}\) is a also minimal compensation pattern of \(p\) using \(v\).

The general case of finding minimal rewritings problems can be reduced to its special case.
Algorithm 1: Finding minimal rewritings

Input: p and v (two patterns)

Output: a minimal compensation pattern of p using v if exists; otherwise null.

1. $p \leftarrow \text{min}(p)$;
2. $v \leftarrow \text{min}(v)$;
3. Let o_v be the output node of v;
4. Let n^p be a node in p has the same position to o_v;
5. **if** $(p)^{n_p}_{sub} \oplus v \neq p$ **then**
6. **return** null;
7. **end if**
8. $R_v^p \leftarrow \emptyset$;
9. $p' \leftarrow (p)^{n_p}_{sub}$;
10. $v' \leftarrow (v)^{o_v}_{sub}$;
11. **for** Each $n_{p'} \in C_{p'}$ **do**
12. **for** Each $n_{v'} \in C_{v'}$ **do**
13. **if** $(p' \oplus v')^{n_{p'}} \equiv (p' \oplus v')^{n_{v'}}$ **then**
14. $R_{v'}^{p'} = R_{v'}^{p'} \cup \{n_{p'}\}$;
15. **end if**
16. **end for**
17. **end for**
18. **return** $p' - R_{v'}^{p'}$;
The general case

The reduction doesn’t work for the whole fragment \(\text{XP}\{/, //,*,[]\}\), since the fact, \((p)_{\text{sub}}^{n_p}\) is not a compensation pattern of \(p\) using \(\nu\), doesn’t imply no compensation pattern of \(p\) using \(\nu\) exists.

The above algorithm is still sound but potentially runs in exponential time for \(\text{XP}\{/, //,*,[]\}\).
Conclusions

Two problems
 • The rewriting existence problem.
 • The finding minimal rewritings problem.

The rewriting existence problem
 • coNP-hard for XP{/, //,*,[]}.
 • P for the three subclasses of XP{/, //,*,[]}.

The finding minimal rewritings problem
 • Σ^p_3 for XP{/, //,*,[]}.
 • P for the three subclasses of XP{/, //,*,[]}.
Future Work

- Investigating those two rewriting problems in presence of DTDs, or other constraints.

- Developing an index for materialized patterns: by using this index, for a new pattern p, a materialized pattern v can be efficiently found such that there exists a compensation pattern of p using v.

- Developing algorithms on selecting a set of patterns to materialize for obtaining optimal performance with a given query workload.
Thank you